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In the framework of the variational principle the canonical variables describing magnetohydrodynamic
(MHD) flows of general type(i.e., with spatially varying entropy and nonzero values of all topological
invariants) are introduced. It is shown that the velocity representation of the Clebsch type following from the
variational principle with constraints is equivalent to that resulting from the generalization of the Weber
transformation performed in the paper for the case of arbitrary MHD flows. Using such complete velocity
representation enables us not only to describe the general type flows in terms of single-valued functions, but
also to solve the intriguing problem of the “missing” MHD integrals of motion. The set of hitherto known
MHD local invariants and integrals of motion appears to be incomplete: for the vanishing magnetic field it does
not reduce to the set of the conventional hydrodynamic invariants. And if the analogs of the vorticity and
helicity were discussed earlier for the particular cases, the analog of Ertel invariant has been so far unknown.
It is shown that all “missing” invariants are expressed in terms of the decomposition of the velocity represen-
tation into the “hydrodynamic” and “magnetic” parts. In spite of the nonunique character of such representation
it is shown that there exists a natural restriction of the gauge transformations set allowing one to make the
invariants gauge independent. It is found that on the basis of the new invariants introduced a wide set of
high-order invariants can be constructed. The new invariants are relevant both for the deeper insight into the
problem of the topological structure of the MHD flows as a whole and for the examination of the stability
problems. The additional advantage of the proposed approach is that it enables one to deal with discontinuous
flows, including all types of possible breaks.
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I. INTRODUCTION

It is well known that description of the solid media flows
in terms of the canonical(Hamiltonian) variables is very use-
ful and effective, see, for instance, Refs.[1,2]. On the basis
of the Hamiltonian variables it is possible to deal with all
nonlinear processes in unified terms which are independent
of the specific problem related to the media under investiga-
tion. For instance, all variants of the perturbation theory are
expressed in terms of different order nonlinear vertices,
which along with the linear dispersion relation contain the
specific information relating to the concrete system, see
Refs.[3,4]. In studying nonlinear stability problems the con-
ventional Hamiltonian approach based upon the correspond-
ing variational principle allows one to use the Hamiltonian
along with other integrals of motion(momentum, number of
quasiparticles, topological invariants) in order to construct
the relevant Lyapunov functional, see Refs.[5–9]. Therefore,
it is important to address the problem of introducing the
canonical variables and corresponding variational principle
for the general type MHD flows(i.e., rotational, nonbarotro-
pic and including all types of breaks that are possible for
MHD) and obtaining the complete set of the local invariants,
see definition and discussions in original papers[10–13] and
in the recent review[1]. As for the first item, the example of
the variational principle describing all possible breaks is
given in the recent work[14].

Here in the framework of some modification of the varia-
tional principle of the latter work we examine the problem of
the MHD invariants. Note that the set of invariants for MHD
discussed in the literature has been so far incomplete. The

statement becomes apparent when it is considered that for
the vanishing magnetic field this set has to be reduced to that
of the conventional hydrodynamic invariants. But this limit
transition does not reproduce Ertel, vorticity, and helicity in-
variants existing for the hydrodynamic flows.

Despite the fact that for the dissipation-free MHD flows
there exist additional topological invariants, namely, mag-
netic helicity and cross helicity, introduced in the papers,
[15–17], the analogs of the vorticity and helicity invariants
have not been discussed with necessary completeness thus
far, see, for instance, the recent review[1]. The related quan-
tities were mentioned for the specific cases of symmetric
flows in the works[18–20], the vorticity and helicity invari-
ants for the incompressible flows have been obtained re-
cently in Refs.[8,9]. But an analog of the Ertel invariant
have not been presented so far(see the short communication
in Ref. [21]). The problem of obtaining the analogs of the
hydrodynamic invariants consists in the nonpotential charac-
ter of the Lorentz force. Therefore, the vorticity and helicity
of the total velocity fieldv are not conserved along with the
Ertel invariant construction,r−1v ·¹s. Nevertheless, corre-
sponding generalizations have to exist, which becomes evi-
dent from the simple consideration. Namely, let us consider
the well known set of invariants for dissipation-free MHD
flows (energy, magnetic and cross helicity). Setting the mag-
netic field zero we arrive at zero values of the magnetic and
cross helicity invariants, but do not get Ertel invariant(and
hydrodynamic vorticity and helicity for the barotropic
flows). This fact indicates incompleteness of the MHD in-
variants set. Evidently, there have to exist MHD analog of
the Ertel invariant passing on to the hydrodynamic Ertel in-
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variant for the vanishing magnetic field. Below we derive the
MHD generalization for the Ertel invariant and show that the
generalized vorticity and helicity invariants also exist for the
compressible barotropic MHD flows. The possibility of ob-
taining these invariants is based upon the velocity decompo-
sition in the two parts, “hydrodynamic” and “magnetic.” The
latter vanishes with the magnetic field vanishing and can be
presented in the form of the vector product of the magnetic
field and the canonically conjugate momentum and was first
introduced in Ref.[22]. In spite of the artificial character of
the velocity field decomposition at first sight, we show that
the decomposition naturally follows both from the least ac-
tion principle in the canonical variables and from the partial
integration of the Euler equations of motion(generalized
Weber transformation, see Refs.[23,24]). For the incom-
pressible flows the latter was presented in Refs.[8,9]. Note
that the “hydrodynamic” part of the velocity is of the Cleb-
sch type but involves vector potentials instead of the scalar
ones, see discussion in Refs.[1,14,25,26]. The use of the
vector Clebsch potentials allows one to deal with the flows
possessing nontrivial topology, contrary to the restriction to
the scalar potentials. If the latter are single valued then the
helicity vanishes identically.

The outline of the paper is as follows. In Sec. II we briefly
discuss the appropriate variational principle, introducing the
Clebsch type velocity representation by means of constraints
and defining the canonical variables. The velocity represen-
tation thus obtained yields the necessary decomposition. In
Sec. III we develop generalization of the Weber transforma-
tion and show that it leads to the velocity representation,
which is equivalent to that following from the variational
principle under discussion. In Sec. IV we examine the MHD
integrals of motion, introducing “missing” MHD invariants,
and discuss their transformation properties relating to the
gauge change. We show that there exist natural gauges under
which the additional basic invariants become unambiguous,
specifically that with a vanishing initial value of the mag-
netic part of the velocity representation. In Sec. V we make
some conclusions and formulate problems to be solved later.

II. VARIATIONAL PRINCIPLE AND CANONICAL
VARIABLES

Let us briefly describe the variational principle and sub-
sidiary variables describing dissipation-free MHD. Starting
with the standard Lagrangian density

L = r
v2

2
− r«sr,sd +

H2

8p
, s1d

where r, s, and «sr ,sd are the fluid density, entropy, and
internal energy, respectively,H denotes the magnetic field,
we have to include the constraint terms in the actionA. Then
the action can be presented as

A =E dtL8, L8 =E drL8, L8 = L + Lc, s2d

whereLc is the part of the Lagrangian density respective for
the constraints

Lc = rDw + lDm + sDs− MS ] A

] t
− v 3 curlA + = LD

−
H · curlA

4p
. s3d

HereD=]t+v ·= is the substantialsmateriald derivative and
A is the vector potentialf27g. Including the terms withL and
H =curlA into Lc allows us to obtain the dynamic equation
for the vector potential in the gauge invariant formfsee
Eq. s10d belowg and to introduce relationH =curlA strictly
into the variational principle.

Supposing first that all variables introduced(including ve-
locity) are independent, we obtain the following set of varia-
tional equations:

dw ⇒ ]tr + divsrvd = 0, s4d

dr ⇒ Dw = w − v2/2, s5d

dl ⇒ Dm = 0, s6d

dmm ⇒ ]tlm + divslmvd = 0, s7d

ds ⇒ Ds= 0, s8d

ds⇒ ]ts + divssvd = − rT, s9d

d M ⇒ ]tA = v 3 curlA − ¹ L, s10d

dA ⇒ ]tM =
curlH

4p
+ curl†v 3 M ‡. s11d

d H ⇒ H = curlA , s12d

dL ⇒ divM = 0, s13d

wherew andT are the enthalpy density and temperaturef28g.
Note that in this section we assume the velocity field to be

independent of other variables. Therefore, variation with re-
spect tov results in the velocity representation

dv ⇒ rv = − r ¹ w − lm ¹ mm − s ¹ s− H 3 M . s14d

It is convenient to rewrite it in a shortened form that empha-
sizes its structure. Bearing in mind that the velocity potential
w, the vector Lagrange markersm, entropys, and the vector
potential A can be treated as generalized coordinates, one
can see thatr, l, s, and subsidiary field −M are conjugated
momenta, respectively. Letf29–31g

Q = sQ,Ad, Q = sw,m,sd, P = dA/ds]tQd,

P = sr,l,sd, P = sP,− M d. s15d

Then the velocity representation takes the transparent
form
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v = v0sP, ¹ Qd, v0 = vh + vM, vh = −
P

r
¹ Q,

vM = −
H 3 M

r
. s16d

Here subindexesh andM correspond to the “hydrodynamic”
and “magnetic” parts of the velocity field. The suffix zero on
v underlines the fact thatv0 is supposed to be the dependent
variable, it is expressed in terms of the canonical variables
by means of the representation found. The hydrodynamic
part vh corresponds to the generalized Clebsch representa-
tion, see Refs.[14,25,26], and the magnetic partvM coin-
cides with the traditional term if we replace the divergence-
free field M by curlS. This term was first introduced by
Zakharov and Kuznetsov, see Ref.[22]. But they used the
incomplete form for the hydrodynamic part of the velocity,
restricting it to the scalar Clebsch variables. This reduced
form [32] evidently corresponds to the flows with zero-
valued generalized helicity(or, for H →0, it results in the
hydrodynamic helicity vanishing) if the scalar Clebsch vari-
ables are single valued. In addition, the above velocity rep-
resentation involves the entropy term −s¹S/r. The latter is
essential for the discontinuous flows with any types of the
dynamically allowable breaks, including shocks, see Refs.
[14,21,25,26]. Note that Lagrange markersm are continuous
crossing the break surface, contrary to the entropy. There-
fore, the entropy term can be omitted for the continuous
flows when the entropy can be considered as a continuous
function depending on the Lagrange markers.

From the velocity representation(16) and the equations of
motion (4) – (11) it strictly follows that the velocity fieldv
=v0 satisfies Euler equation with the magnetic force taken
into account. Namely, providing differentiation we have

rDv0 = − ¹ p +
curlH 3 H

4p
, s17d

wherep is the fluid pressure.
Canonical variables. The variational principle can be eas-

ily reformulated in the Hamiltonian form. Excluding the
magnetic and velocity fields by means of Eqs.(12) and(16)
we arrive at the following Hamiltonian density:

H = HsP, ¹ Qd

= P]tQ − L8

= r
v0

2

2
+ r«sr,sd +

scurlAd2

8p
− M · = L. s18d

Equations of motions4d – s11d can now be expressed in the
canonical form

]tQ = dH/dP, ]tP = − dH/dQ, Q = sw,m,s;Ad,

P = sr,l,s;− M d; s19d

Eq. (12) serves as a definition of the magnetic field, and the
divergence-free condition for the subsidiary fieldM , Eq.
(13), follows from the variation of the action

A =E dtE dr sP]tQ − Hd s20d

with respect toL. Note that it is possible to putL=0. Under
this assumption the divergence-free condition for the fieldM
vanishes. But from Eq.s11d it follows that divM is a con-
served quantity,]tdivM =0. Therefore, supposing that
divM =0 holds for some initial moment we arrive at the
conclusion that this is valid for the arbitrary moment.
Nevertheless, it proves convenient to deal withLÞ0 that
makes it possible to use different gauge conditions for the
vector potential.

The above variational principle results in the set of dy-
namic equations. From the latter follow the conventional
MHD equations(4), (9), and (17) and the equation for the
magnetic field, which follows from Eq.(10) after taking curl

]tH = curlfv 3 Hg. s21d

On the contrary, if at some initial momentt= t̄, we have

the conventional MHD fieldsr̄, s̄, v̄, andH̄, then we can find

the initial subsidiary fieldsw̄, m̄, l̄, s̄, Ā, M̄ , and L̄, satis-
fying Eqs. (12)–(14). This can be done to within the gauge
transformations(the latter do not change both the velocity
and the magnetic field) due to the fact that the subsidiary
fields play a role of generalized potentials. Then, if the
uniqueness conditions are satisfied both for the conventional
MHD equations and for the set of variational equations, we
are led to conclude that corresponding solutions coincide for
all moments. In this sense we can state that these sets of
equations are equivalent, see Ref.[4].

The complete representation of the velocity field in the
form of the generalized Clebsch representation(16) allows,
first, to deal with the MHD flows of general type, including
all types of breaks, see Ref.[14]; second, for the zero mag-
netic field it results in the correct limit transition to the con-
ventional hydrodynamics, see Refs.[25,26]; third, it allows
obtaining the integrals and invariants of motion for the MHD
flows additional to the known ones: for instance, the gener-
alized Ertel invariant, generalized vorticity and generalized
helicity, see below. The two last integrals were deduced for
the particular case of incompressible flows in Refs.[8,9], see
also Refs.[18–20] where the vorticity and helicity analogs
were obtained for the MHD flows with the specific spatial
symmetry. Moreover, it is possible to show that representa-
tion (16) is equivalent to that following from the Weber
transformation, see Refs.[23,24] and the recent review[1].

III. GENERALIZED WEBER TRANSFORMATION

Suppose that the fluid particles are labelled by Lagrange
markers a=sa1,a2,a3d. The label of the particle passing
through pointr =sx1,x2,x3d at time t is then

a = asr ,td, Da =
] a

] t
+ sv · =da = 0. s22d

The particle paths and velocities are given by the inverse
function
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r = r sa,td, v = Dr sa,td = z ] r /] tua=const. s23d

Let the initial position of the particle labeleda is X, i.e.,

r sa,0d = Xsad. s24d

A natural choice of the labels would beXsad=a; however, it
is convenient to retain the extra freedom represented by the
“rearrangement function”Xsad.

We seek to transform the equation of motion(17) to an
integrable form, by generalizing the argument of Weber[23]
(see, for example, Refs.[33], [1], and[8]. It is convenient to
represent Eq.(17) as

Dv = − ¹ w + T ¹ s+ j 3 h, s25d

whereh=H /r and the vectorj is defined according to

j =
curlH

4p
, s26d

being proportional to the current density. Multiplying Eq.
s25d by ]xk/]ai we have

sDvkd
] xk

] ai
= −

] w

] xk

] xk

] ai
+ T

] s

] xk

] xk

] ai
+ f j 3 hgk

] xk

] ai
.

s27d

The left-hand sidesLHSd can be represented as

sDvkd
] xk

] ai
= DSvk

] xk

] ai
D −

]

] ai
sv2/2d, s28d

where we have taken into account that operatorD
;] /]tua=const and thereforeDxk=vk and D commutes with
derivative] /]ai. Equations27d now takes the form

DSvk
] xk

] ai
D =

]

] ai
sv2/2 − wd + T

] s

] ai
+ f j 3 hgk

] xk

] ai
.

s29d

It is convenient to transform the last term by means of the
dynamic equation for the subsidiary fieldm=M /r fcompare
Eq. s11dg

Dm = sm · =dv + j /r. s30d

Then we can transform the last term in the right-hand side
sRHSd of Eq. s29d to the form of the substantial derivative,
see the Appendix,

f j 3 hgk
] xk

] ai
= DSfm 3 Hgk

] xk

] ai
D . s31d

Analogously, the first two terms in the RHS of Eq.(29)
can be presented as substantial derivatives by means of in-
troducing subsidiary functionsw ands, which satisfy equa-
tions [compare Eqs.(9) and (5)]

DSs

r
D = − T, s32d

Dw = w − v2/2. s33d

Then

T
] s

] ai
= −

] s

] ai
DSs

r
D = − DS ] s

] ai

s

r
D ,

]

] ai
sv2/2 − wd = − DS ] w

] ai
D , s34d

where we have taken into account thatDs=0 along with
Ds]s/]aid=0. Therefore, we can present the Euler equation
(29) in the integrable form

DSvk
] xk

] ai
D = − DS ] w

] ai
D − DS ] s

] ai

s

r
D + DSfm 3 Hgk

] xk

] ai
D .

s35d

Integration leads to the relation

vk
] xk

] ai
= −

] w

] ai
−

] s

] ai

s

r
− fH 3 mgk

] xk

] ai
+ bi . s36d

Here b=bsad does not depend on time explicitly,Db=0,
presenting the vector constant of integration. Multiplying
this relation by]ai /]xj allows reverting from Lagrangian
sa,td, to the Euleriansr ,td variables

v = − ¹ w + bk ¹ ak −
s

r
¹ s− h 3 M . s37d

This representation obviously coincides with the above
discussed Clebsch representation if one identifiesb with
−l /r and a with m. Moreover, this proves equivalence of
description of the general-type magnetohydrodynamic flows
in terms of canonical variables introduced and the conven-
tional description in Lagrange or Euler variables. The equa-
tions of motion for the generalized coordinates and momenta
follow now from definitions of the subsidiary variablesa,
m=M /r, s, w, andb.

Emphasize that the vector fieldM =rm introduced by Eq.
(30) satisfies the integral relation

]tE
S

M ·dS =E
S

j ·dS, s38d

whereS is some oriented area moving with the fluid. This
fact was first indicated in Ref.f8g for the incompressible
flows. Now we see that it holds true for the general case. The
proof of this statement is given in Appendix. Expressing
M =curlS and making use of the Stokes theorem we con-
clude that time derivative of the vectorS circulation over
the closed frozen-in contour]S is proportional to the cur-
rent frecall, j =s4pd−1curlH and differs from the current
density by the constant multiplierg intersecting the surface
defined by this contour
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]tE
]S

S ·dl =E
S

j ·dS = s4pd−1E
]S

H ·dl s39d

that highlights the physical meaning of the subsidiary fieldS
usually introduced for the canonical description of MHD
flows. Underline that this identity strictly follows from the
dynamic equation for the subsidiary fieldS and is insensitive
to the compressibility.

The vector constant of integrationb may be expressed in
terms of the initial conditions

bi = V̄ksad
] Xk

] ai
+

] w0

] ai
+ c0

] s

] ai
,

w0 = wsa,0d, c0 = USs

r
DU

t=0
, V̄ksad = Vksad + fh0 3 M 0gk,

Vksad = vksa,0d,

h0 ; h0sad = hfxsa,0d,0g = hfXsad,0g,

M 0 ; M 0sad = M fxsa,0d,0g = M fXsad,0g. s40d

Under special conditions, namely, for

Xsad = a, r sa,0d = a, asr ,0d = r , s41d

from Eq. s40d it follows

bi = V̄isad +
] w0

] ai
+ c0

] s

] ai
. s42d

Adopting zero initial conditions

M 0 = 0, w0 = 0, s0 = 0, s43d

we obtain

b = V̄sad = ṽsa,0d ; ṽ0sad = vsa,0d, s44d

where, indicates that we are dealing with the velocity field
in the Lagrange description, i.e.,ṽsa,td denotes the velocity
of the fluid particle with labela at time t. Evidently,
ṽsa,td=vsr ,td, wherea andr are linked by relationss22d and
s23d for the specific choice given by Eqs.s41d ands43d. Then
the velocity representation takes the particular form

v = vh − fh 3 M g, vh ; − = w + ṽ0k = ak −
s

r
= s,

ṽ0sr d = vsr ,0d, asr ,0d = r . s45d

It differs from that presented in Ref.[4] by involving the
entropy term. Note that existence of this term allows one to
describe the general-type MHD flows(and hydrodynamic
flows under conditionH =0) with arbitrary possible discon-
tinuities, including shocks, slides and rotational breaks see
Refs.[14,25,26]. One can omit this term for continuous baro-
tropic and isentropic flows.

IV. INTEGRALS OF MOTION

The conservation laws, as is well known, follow from the
specific symmetries of the action. Existence of the relabel-
ling transformations group(first discussed by Salmon in Ref.
[34]) of the Lagrange markersm leads to the integrals of
motion that are additional to the energy, the fluid momentum
and mass conservation. These additional integrals are ex-
pressed in terms of the Lagrange description of the motion,
i.e., in terms of the Lagrange markers, etc. Therefore, as a
rule, they are gauge dependent. The frozen-in character of
the magnetic field results in the specific topological integrals
of motion, namely, magnetic helicity and cross helicity, first
discussed in Refs.[15–17], see also review[1]. Correspond-
ing densities are, respectively,

hM = A ·H s46d

and

hC = v ·H . s47d

To clarify the following discussion relating to the addi-
tional local invariants and integrals of motion, let us briefly
recall the known ones. As it strictly follows from the dy-
namic equations, the local conservation law for the magnetic
helicity holds true for general type MHD flows

]thM + divqM = 0, qM = vhM − H · sA ·v − Ld. s48d

On the contrary, in the general case the cross-helicity is gov-
erned by equation

]thC/] t = − divfvhC + sw − v2/2dHg + TdivssHd

and is not conserved. But for barotropic and isentropic flows
the pressurep=psrd andhC is conserved,

]thC + divqC = 0, qC = vhC + sx − v2/2dH , s49d

wherex=edp/r.
For the general case one more conserved quantity first

discovered by Gordin and Petviashvili, see Ref.[35], is
known. Corresponding density is

hP = H · ¹ s s50d

and

]thP + divqP = 0, qP = vhP. s51d

The integral conservation laws are related to the local
conserved quantities. For instance, integratinghP over arbi-

trary substantial volumeṼ we obtain conserved quantityIP,

IP =E
Ṽ

drhP, ]t IP = 0. s52d

Note thathP/r gives us an example of the so-called local
Lagrange invariantssin other words, Casimirsd, see Refs.
f10–13g and f1,2g. By definition they obey the following
equations:

]ta + v · = a = 0, ]tI + sv · =dI = 0, s53d
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]t J + sv · =dJ − sJ · =dv = 0, s54d

]tL + sv · =dL + sL · =dv + L 3 curlv

= 0 or, equivalently,]tL + = sv ·L d − v 3 curlL = 0.

s55d

Herea and I denote the scalar and vector Lagrange invari-
ants,J is the frozen-in field, andL denotesS-type invariant
by terminology of Ref.f12g, related to a frozen-in surface.
To these invariants it is necessary to add the densityr f36g.
Evidently, the quantityhP/r is the a-type invariant. The
Lagrange markersm and quantitiesl /r supply examples of
the vector Lagrange invariants, the magnetic fieldH divided
by r, h=H /r is invariant of theJ-type, gradient of any sca-
lar Lagrange invariant is theS-type invariant,

L 8 = ¹ a. s56d

There also exist other relations between different type in-
variants, see Refs.[1,2], allowing one to generate new in-
variants. For instance, the scalar product of theJ and L
invariants results in some scalar Lagrange invariant, sym-
bolically

a8 = sJ ·L d. s57d

The abovementioned invarianthP/r can be obtained by
means of this relation if we putJ=h andL = =s. Other ex-
amples are represented by relations generatingJ- sL d- type
invariants by means of twoL - sJ-d type invariants,

J8 = fL 3 L 8g/r, s58d

L 8 = rfJ 3 J8g. s59d

Note that integrating of the densityhM over an arbitrary
substantial volume does not lead to the conserved integral. It
is easy to check up that

IM =E
Ṽ

drhM s60d

satisfies

]tIM =E
]Ṽ

dSsA ·v − LdHn, Hn = H ·n, s61d

where integration in the RHS is performed over the boundary

]Ṽ of the volumeṼ, n is the outward normal, anddS denotes

an infinitesimal area of the surface]Ṽ. It is obvious thatIM
will be an integral of motion ifHn equals zero. This fact
allows us to conclude thatIM becomes an integral of motion
if we choose the substantial volume in such a way that on the

boundary of the initial volume,uṼut=t0
, holds equalityHnut=t0

=0. The latter condition is invariant of the motion: if equality
Hn=0 is fulfilled for the initial moment, then it holds true in
the future.

Another way to makeIM invariant consists in fixing the
gauge of the vector potentialA so thatA ·v=L. Then the
dynamic equation forA, Eq. (10), takes the form

]tA + ¹ sv ·Ad − v 3 curlA = 0,

i.e., A becomes an invariant of theL type. Under this gauge
condition the quantityhM /r presents the scalar Lagrange in-
variantDshM /rd=0.

As for the local conservation law for the cross helicity
(49), it obviously leads to the integral conserved quantityIC
for the barotropic flows but with the following restriction:
integration has to be performed over the specific substantial
volume, namely such that conditionHnu]Ṽu =0 (this condition
is invariant of the motion) holds,

]t IC = 0, IC ; E
Ṽ

drhC, Hnu]Ṽu = 0.

Existence of the recursive procedure allowing one to con-
struct new invariants on the basis of the starting set of in-
variants, see Refs.[1,2], underlines the role of the local in-
variants among other conserved quantities. Although in
terms of the Lagrangian variables(such as the markersm)
there exists a wide set of invariants, see, for instance, Ref.
[1], the most interesting invariants are such that can be ex-
pressed in Eulerian(physical) variables and thus are gauge
invariant.

Emphasize that in the conventional hydrodynamics there
exists Ertel invariantaE,

aE = hE /r, hE = v · = s, s62d

wherev=curlv is vorticity,

]thE + divqE = 0, qE = hEv, DaE = 0. s63d

The corresponding integral of motion reads

]t IE = 0, IE ; E
Ṽ

drhE. s64d

Note thatDIE=0 holds true for an arbitrary substantial vol-

ume Ṽ.
The Ertel invariant density has the structure of Eq.(57)

with L = ¹s, J=v /r (recall thatv is a frozen-in field for the
barotropic hydrodynamic flows). In the hydrodynamic case
there also exists the helicity invariant

hH = v ·v, s65d

which has a topological meaning, defining knottedness of the
flow. It satisfies equation

]thH + divqH = 0, qH = hHv + sx − v2/2dv, s66d

and evidently results in the corresponding integral conserva-
tion law

]t IH = 0, for vnu]Ṽu = 0, IH ; E
Ṽ

drhH. s67d

For the MHD case the vectorv /r is not the frozen-in
field due to the fact that magnetic force is nonpotential. It
seems evident that for the MHD case there have to exist the
integrals of motion generalizing the conventional helicity
and Ertel invariant along with vorticity integral. These in-
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variants are to pass into the conventional ones for the van-
ishing magnetic field. The generalization for the vorticity and
helicity invariants was obtained in Ref.[8] for the particular
case of the icompressible flows. In the following section it is
shown that there exists MHD generalization for the Ertel
invariant, and results of Ref.[8] relating to the vorticity and
helicity can be extended to compressible barotropic MHD
flows.

A. Generalized vorticity

Let us prove that the quantityvh/r, where

vh ; curlvh

= − F=SP

r
D = QG

= − F=Slm

r
D 3 = mmG − F=Ss

r
D 3 = sG , s68d

is the frozen-in fields“hydrodynamic” part of the vorticityd
for the barotropic MHD flows. It would be a trivial conse-
quence of the fact thatfL 3L 8g /r, whereL , L 8 are Lamb-
type invariants, is the local invariant of the frozen-in type if
all quantities Q and P/r satisfy homogeneous transport
equations beinga- or I -type invariantssremember that=a
and =Im are L -type invariantsd. But w and s /r satisfy the
inhomogeneous equations of motion. Therefore, let us start
with equation of motion for the “hydrodynamic” part of the
velocity. Differentiating Eq.s16d and making use of relations

Ds=Xd = = sDXd − s=vmd · ]mX

we have

Dvh = − DSP

r
D · = Q −

P

r
· = sDQd +

P

r
s=vmd · ]mQ

= T = s− = sw − v2/2d − vhm= vm

or, after simple rearrangements,

Dvh = − = p/r + svm − vhmd · = vm. s69d

Taking the curl of this equation results in

]tvh = − curlsvm]mvhd + f=r 3 = pg/r2 − curlsvhm= vmd

= f=r 3 = pg/r2 + curlsvm = vhm− vhm= vmd.

The term in the square brackets is equal tovm=vhm
−vhm=vm=v3vh and we obtain

]tvh = f=r 3 = pg/r2 + curlfv 3 vhg. s70d

For the barotropic flows,p=psrd, the first term in the RHS
becomes zero and we can see thatvh/r is the frozen-in field

DSvh

r
D = Svh

r
· =Dv. s71d

At H =0, vh corresponds to the conventional hydrodynamic
vorticity.

B. Generalized Kelvin’s theorem

The frozen-in character of the generalized vorticity allows
obtaining the strict generalization of the Kelvin’s theorem for
the barotropic flows. But with some restrictions it is valid
also for the non barotropic flows. Namely, circulationG of
the hydrodynamic part of the velocity over the closed mate-
rial contour C is a constant of motion if the entropys is
constant on this contour

DG = 0, G ; rCvh ·dl for suCu=const. s72d

The proof strictly follows from the velocity representation

G = rCvh ·dl

= rCSdw +
lm

r
dmm +

s

r
dsD

= rCSlm

r
dmm +

s

r
dsD . s73d

Differentiating G and taking into account thatDmm
=Dslm/rd=0 we obtain

DG = rCdsDSs

r
D = − rCTds= 0 for suCu = const.

s74d

Note that for barotropic flows this result strictly follows
from the fact thatvh/r is the frozen-in field. Namely, for
any J-type invariant it can be easily proved that

DE
S

dSrJ ·n = 0,

where integration is performed over the substantial surface
S. Then for rJ=vh after applying the Stokes theorem, we
have

DE
S

dSvh ·n = Dr]Svh ·dl = 0.

C. Generalized helicity

Now it can be proved that generalized helicity,hH, defined
in terms of the “hydrodynamic” part of the velocity

hH = vh ·vh, s75d

is the integral of motion for barotropic flows. Differentiating
Eq. s75d and taking into account Eqs.s69d ands70d for baro-
tropic flows we arrive at the local conservation law of the
form srather cumbersome calculations are given in the Ap-
pendixd:

]thH + divqH = 0, qH = hHv + sx − v2/2dvh. s76d

In analogy with the hydrodynamic case we can conclude that
the integral helicityIH fdefined by means of Eq.s67dg is the
integral invariant, moving together with the fluid if the nor-
mal component of the vorticity tends to zero,vhn=0, on the

surface of the corresponding substantial volumeṼ. Note that
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the conditionvhn=0 is invariant of the motionsdue to the
frozen-in character ofvh/rd and therefore it can be related to
the initial surface only.

D. Generalized Ertel invariant

Let us show that there exists strict generalization of the
Ertel invariant for the MHD case. For this purpose let us
prove that without any restrictions related to the character of
the flow the quantity

hE = svh · = sd s77d

obeys the conservation law of the form

]thE + divqE = 0, qE = hEv. s78d

Equivalently, the quantityaE=hE/r is transported by the
fluid

DaE = 0, aE = hE/r, s79d

being a-type invariant. For the barotropic flows it immedi-
ately follows from the fact thatvh/r is the frozen-in field if
the composition rules given by Eqs.s57d and s56d are taken
into account. In order to make the proof for the nonbarotro-
pic flows more transparent let us consider a more general

situation. LetJ̃ satisfy equation of motion of the form

DJ̃ = sJ̃ · =dv + Z , s80d

differing from the frozen field equations54d by existence of
the termZ that violates homogeneity. Then, ifa represents
any scalar Lagrange invariant, we have

DsJ̃ · = ad = DJ̃ · = a + J̃ ·D = a

= Z · = a + „sJ̃ · = dv… · = a − sJ̃ · = vmd · ]ma.

Here the two last terms cancel and we get

DsJ̃ · = ad = Z · = a if DJ̃ = sJ̃ · =dv + Z

and Da = 0. s81d

For Z =0 these relations prove the generating rule of Eq.

s57d. But we can see thatJ̃ ·=a becomes the local Lagrange
invariant under less restrictive conditionZ ·=a=0. That is
the case for the Ertel invariant:Z =f=r3 =pg /r3 is orthogo-
nal to =s due to the fact that the scalar product of any three
thermodynamic quantities is equal to zerosbecause any ther-
modynamic variable in the equilibrium state is a function of
two basic variablesd. This concludes the proof.

The conserved integral quantity associated withaE is

IE =E
Ṽ

drhE, ]t IE = 0. s82d

Note that by the structureIE is not gauge invariant in con-
trast to the hydrodynamic case. Let us examine its change
under gauge transformation that results invh⇒vh8, vM ⇒vM8
with

vh8 + vM8 = vh + vM .

Then

IE8 − IE =E
Ṽ

dr ¹ s · svh8 − vhd =E
Ṽ

dr ¹ s · svM − vMd.

But =s·svM −vM8 d=−divf=s3 svM8 −vMdg and, therefore,

IE8 − IE = −E
]Ṽ

dS n · f¹s3 svM8 − vMdg.

Now we can proceed in the two ways. First, making use of
identity =s3X =curlssXd−s·curlX we obtain

IE8 − IE = −E
]Ṽ

dS n · hcurlfssvM8 − vMdg − s curlsvM8 − vMdj.

Here the integral of the first term vanishessthat is trivial for

a closed boundary]Ṽ and assumes the necessary decrease of

the integrand for the infinite volumeṼd and we have

IE8 − IE =E
]Ṽ

dS sn · curlsvM8 − vMd. s83d

This representation immediately suggests that integral Ertel
invariant becomes gauge independent for the substantial vol-

umeṼ chosen in such a way that its boundary coincides with
the entropy-constant surfacesu]Ṽu =const.

The second way is as follows. Bearing in mind thatvM8
−vM =−fh3 sM 8−M dg we obtain

IE8 − IE =E
]Ṽ

dS n · h¹s3 fh 3 sM 8 − M dgj. s84d

Inasmuch as bothM 8 andM satisfy Eq.s11d, their difference

M̄ =M 8−M is governed by the homogeneous equation

]tM̄ = curlfv 3 M̄ g,

i.e., m̄=M̄ /r is frozen-in field. Then we can conclude that
the vector =s3 fh3m̄g entering the integrand is the
frozen-in field, as it follows from recursion relations
s56d–s58d. Therefore, if we adopt relationun ·f=s3 fh
3m̄ggu]Ṽ=0 as the initial condition, then it holds true for all
moments. For instance, this relation is fulfilled ifHn=0 and
m̄n=0 at the initial moment. Evidently, these two conditions
cannot be fulfilled for an arbitrary gauge. But we can restrict
ourselves to a such subset of the initial conditions for the
subsidiary fieldM that uM ut=t0

= ufH ut=t0
, where f is an arbi-

trary function. fThen divM =divuM ut=t0
= u= f ·H ut=t0

is time
independent in accordance with Eq.s11d, and for the par-
ticular choice off such thatuH ut=t0

·= f =0 we have divM
=0.g For these initial conditionsM along with M 8 are
collinear toH at the initial moment and therefore the ini-
tial value of the scalar productn ·s=s,fh ,m̄gd is zero. Due
to the frozen-in character of the quantity=s3 fh3m̄g
equationn ·s=s3 fh3m̄gd=0 holds true for the arbitrary
moment. Thus we can make the conclusion that gauge
dependence of the Ertel’s invariant can be partly elimi-
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nated by appropriate choice of the initial conditions or
substantial volumes.

E. Specific gauge

Examination of the integrals of motion shows that they
are gauge dependent. This dependence is attributed to differ-
ent decompositions of the velocity field into the “hydrody-
namic” and “magnetic” partsv=vh+vM. Underline that there
exists a wide subgroup of the gauge transformations that
include transformations that change the generalized poten-
tials w, m, l, and s with no change inM . The “hydrody-
namic” part of the velocity representationvh does not evi-
dently vary under the action of transformations of this, say,
“hydrodynamic” subgroup. Then the generalized circulation,
integral helicity and Ertel integral are likewise invariant un-
der these gauge transformations. The simplest way to restrict
the gauge transformations by this subgroup consists in adopt-
ing zero initial conditions for the subsidiary fieldM . This
choice does not restrict in any way the character of a flow, in
particular, all integrals of motion can possess nonzero values.
The more detailed discussion of the gauge dependence of the
additional integrals considered will be presented elsewhere.

V. CONCLUSIONS

The results obtained can be summarized as follows. First,
the variant of introducing the canonical description of the
MHD flows by means of the variational principle with con-
straints is presented. It is shown that in order to describe
general-type MHD flows it is necessary to use in the gener-
alized Clebsch-type representation for the fluid velocity field
the vector Clebsch variables(the Lagrange markers and con-
jugate momenta) along with the entropy term(see Refs.
[25,26] describing the hydrodynamic case) and the conven-
tional magnetic term introduced first in Ref.[22]. Such a
complete representation allows one to deal with general-type
MHD flows, including all type of breaks, see Ref.[14]. Sec-
ond, it is proved that the generalized Weber transformation
introduced leads to the velocity representation, which is
equivalent to that introduced by means of the variational
principle. Third, the existence of the generalized Ertel invari-
ant for MHD flows is proven. Forth, there are generalized the
vorticity and helicity invariants for the compressible barotro-
pic MHD flows (first discussed for the incompressible case
in Ref. [8]). Fifth, the relations between the local and integral
invariants are discussed along with the gauge dependence of
the latter.

As a consequence of the completeness of the proposed
velocity representation we get the correct limit transition
from the MHD to the conventional hydrodynamic flows. The
results obtained allow one to consider the complicated MHD
problems in terms of the Hamiltonian variables. The use of
this approach was demonstrated for the specific case of in-
compressible flows in the series of papers[8,9] devoted to
the nonlinear stability criteria. We emphasize that the exis-
tence of the additional invariants proved in our paper is of
high importance for the stability problems.

Note that existence of the additional basic invariants of
the motion makes it actual to examine the problem of the

complete set of independent invariants, and, respectively, the
complete set of the corresponding Casimirs, see Ref.[1]. For
instance, existence of the three independent basic local in-
variants for the nonbarotropic flows(s, aE, andh) immedi-
ately leads to the two denumerable sets of the monomial
scalar invariants

aP
smd = sh · = dms, aE

smd = sh · = dmaE, aP
s1d = aP,

aE
s0d = aE, m= 0,1,2, . . . .

The first set was discussed in Ref.[1], and the second subset
is a new one along with the “parent” Ertel invariantaE.
Evidently,

ã = fshaP
smdj,haE

sm8djd,

where f is an arbitrary function, is also the scalar Lagrange
invariant. Therefore, we immediately arrive at the following
set of integrals of motionsCasimirsd

I =E
Ṽ

drrfshaP
smdj,haE

sm8djd, s85d

which is much wider than that discussed in the literature, see
Eq. s10.23d in Ref. f1g. The additional set of the scalar mo-
nomial Lagrange invariants can be generated by the mag-
netic helicity under the specific gauge conditionL=A ·v,
aM

snd=sh ·=dnaM. This enables evident generalization of the
integrals of motions85d.

One example of the additionalJ invariants reads

J8 = f=s3 = aEg/r.

In turn, one can get new sets of the scalar invariants by
applying operationsJ8 ·¹ d to the previous scalar invariants
and so on. Obviously, this also leads to additional Casimirs
to that indicated in Eq.s85d.

For the barotropic flows the picture is analogous: the ba-
sic set of the scalar Lagrange invariants involves the gener-
alized helicityaH=hH /r, andaM (under the gauge condition
specified above), and withJ invariantsh andvh. Therefore,
we obtain additional scalar invariantsaH

snd=sh ·= dnaH, aM
snd,

ã H
snd=sr−1vh·=dnaH, ã M

snd=sr−1vh·=dnaM and the con-
served integrals of the form

I =E
Ṽ

drrfshaH
sndj,haM

sn8dj,hã H
sn9dj,hã M

sn-djd. s86d

This set of the Casimirs generalizes that presented in Ref.
f1g, the latter follows from Eq.s86d if we replace the func-
tion f depending on the four sets of the monomial invariants
by a function depending only on the invariantsaM

snd.
Note that we can construct the following generations of

the local invariants by means of the recursion relations and
obtain Casimirs of a more sophisticated structure than that
presented in Eqs.(85) and(86). The problem of obtaining the
complete set of the local invariants and gauge invariance of
the corresponding integral invariants is rather complicated
and is still under examination. This questions will be dis-
cussed in detail in the forthcoming paper.
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APPENDIX
In order to prove Eq.(31) let us substitutej from Eq.(30)

into expressionfj 3hgk]xk/]ai. Then

fj 3 hgk
] xk

] ai
= fDm 3 Hgk

] xk

] ai
− fsm · = dv 3 Hgk

] xk

] ai

=
] xk

] ai
Dsfm 3 Hgkd − sfm 3 Dsrhdgk

+ fsm · = dv 3 Hgkd
] xk

] ai
. sA1d

Proceeding with the terms in the second brackets we obtain

fm 3 Dsrhdgk + fsm · = dv 3 Hgk

= fm 3 hgk ·Dr + frm 3 Dhgk + fsm · = dv 3 Hgk

= − fM 3 hgk · divv + fM 3 sh · = dvgk

+ fsM · = dv 3 hgk

= − fM 3 hgs]kvs, sA2d

whereM =rm and the dynamic equationDh=sh ·= dv along
with identity

fM 3 sh · = dvgk + fsM · = dv 3 hgk

= fM 3 hgk]svs − fM 3 hgs]kvs

are taken into account. Introducing for brevity notation

Y = m 3 H ; M 3 h,

we can represent the RHS of Eq.sA1d as

] xk

] ai
DYk + Ys

] xk

] ai
]kvs =

] xk

] ai
DYk + Ys

] vs

] ai

=
] xk

] ai
DYk + Ys

]

] ai
sDxsd

= DSYk
] xk

] ai
D .

This proves Eq.s31d.
Let us check on the integral relation(38). It is sufficient to

prove the differential form, namely,

DsM ·dSd = j ·dS, sA3d

wheredS is some infinitesimal oriented area moving with
the fluid. It can be presented as

dS = dl1 3 dl2, sA4d

where dl1, dl2 are frozen-in linear elements. Thus,dla, a
=1,2, areinvariants of theJ type and satisfy equations

Dsdlad = sdla · =dv.

Consequently, from the recursion relations59d it follows that
rdS is L - type invariant and hence it is governed by the
dynamic equation

DsrdSd = − = srv ·dSd + v 3 curlsrdSd

or in the coordinates

DsrdSid = − srdSkd]ivk. sA5d

Now it is easy to prove relationsA3d without any restrictions
for the type of flow. Namely,

DsM ·dSd = Dsm · rdSd

= Dm · rdS + miDsrdSid

= rdS · sm · = dv + j ·dS − mirdSk]ivk

= j ·dS. sA6d

In order to prove the helicity conservation(76), let us
consider some scalar quantity of the form

Y = vh ·J,

whereJ is some frozen-in field. Then, taking into account
that Eq.s69d for the barotropic flows can be rewritten as

Dvh = − = sx − v2/2d − vhm· = vm, x ;E dp/r,

we obtain

DY = Dvh ·J + vh ·DJ = − = sx − v2/2d ·J.

For J=vh/r we proceed

Dsvh · vh/rd = − r−1f¹sx − v2/2d · vhg

= − r−1divfsx − v2/2dvhg.

Then

Dsvh · vhd = rDsvh · vh/rd + svh · vh/rdDr

= − divfsx − v2/2dvhg − svh · vhddivv

or

]tsvh · vhd = − divqh, qh = sx − v2/2dvh + vsvh · vhd
sA7d

that evidently coincides with Eq.s76d.
It is noteworthy that the proof is valid for arbitraryJ-type

invariant if the fieldrJ is divergence free and the flow is
barotropic:

]tsrJ ·vhd = − divq, q = sx − v2/2drJ + vsrJ ·vhd

for divsrJd = 0. sA8d

For instance, choosingJ=h immediately leads to the cross-
helicity invariant if one takes into account thatH ·vh=H ·v.
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